Domain Adaptation by Stacked Local Constraint Auto-Encoder Learning
نویسندگان
چکیده
منابع مشابه
Domain Adaptation by Active Learning
We tackled the Evalita 2011 Domain Adaptation task with a strategy of active learning. The DeSR parser can be configured to provide different measures of perplexity in its own ability to parse sentences correctly. After parsing sentences in the target domain, a small number of the sentences with the highest perplexity were selected, revised manually and added to the training corpus in order to ...
متن کاملStructured Auto-Encoder
In this work, we present a technique that learns discriminative audio features for Music Information Retrieval (MIR). The novelty of the proposed technique is to design auto-encoders that make use of data structures to learn enhanced sparse data representations. The data structure is borrowed from the Manifold Learning field, that is data are supposed to be sampled from smooth manifolds, which ...
متن کاملAuto-JacoBin: Auto-encoder Jacobian Binary Hashing
Binary codes can be used to speed up nearest neighbor search tasks in large scale data sets as they are efficient for both storage and retrieval. In this paper, we propose a robust auto-encoder model that preserves the geometric relationships of high-dimensional data sets in Hamming space. This is done by considering a noise-removing function in a region surrounding the manifold where the train...
متن کاملJapanese Sentiment Classification with Stacked Denoising Auto-Encoder using Distributed Word Representation
Traditional sentiment classification methods often require polarity dictionaries or crafted features to utilize machine learning. However, those approaches incur high costs in the making of dictionaries and/or features, which hinder generalization of tasks. Examples of these approaches include an approach that uses a polarity dictionary that cannot handle unknown or newly invented words and ano...
متن کاملUsing Stacked Sparse Auto-Encoder and Superpixel CRF for Long-Term Visual Scene Understanding of UGVs
Multiple images have been widely used for scene understanding and navigation of unmanned ground vehicles in long term operations. However, as the amount of visual data in multiple images is huge, the cumulative error in many cases becomes untenable. This paper proposes a novel method that can extract features from a large dataset of multiple images efficiently. Then the membership K-means clust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2933591